[Boards: 3 / a / aco / adv / an / asp / b / bant / biz / c / can / cgl / ck / cm / co / cock / d / diy / e / fa / fap / fit / fitlit / g / gd / gif / h / hc / his / hm / hr / i / ic / int / jp / k / lgbt / lit / m / mlp / mlpol / mo / mtv / mu / n / news / o / out / outsoc / p / po / pol / qa / qst / r / r9k / s / s4s / sci / soc / sp / spa / t / tg / toy / trash / trv / tv / u / v / vg / vint / vip / vp / vr / w / wg / wsg / wsr / x / y ] [Search | Free Show | Home]

Lebesgue integral ?

This is a blue board which means that it's for everybody (Safe For Work content only). If you see any adult content, please report it.

Thread replies: 27
Thread images: 2

File: Sphere_wireframe_10deg_6r.svg.png (93KB, 220x220px) Image search: [Google]
Sphere_wireframe_10deg_6r.svg.png
93KB, 220x220px
Hello. Im not a mathematician. I have a question, if my interpretation is right.

I have an integral of a function, divided by a gamma function. It is a new function.

I interpret it like this: because I can integrate the function I can write the new function in a complete space without the loss of generality and write it as a linear combination of the basis functions. Then I can use the Parseval Identity to do scalar multiplication in that space, right ?

Is that Bullshit or does it make sense ?
>>
That picture makes me want to play Marvel vs Capcom 2
>>
>>9153014
ok. whats with my question though ?
>>
>>9153001
Can you express it in math terms?
You have a function f(x) and create a new function
[eqn] g(x)=\frac{1}{\Gamma(x)}\int_0^xf(t)dt[/eqn]
I don't think simply being integrable is enough for the function to belong to a class of functions that admits a basis.
And how would you use Perseval's Identity to "define" scalar multiplication(inner product?)? You mean by defining the inner product as the sum of the products of the coefficients?
>>
>>9153001
>Is that Bullshit or does it make sense ?
It's bullshit.
>>
>>9153040
inner product: yeah thats what I mean.

But write 1/gamma(t) * integral from zero to infinity f(x,t) dx = g(t)

Its not a new function, its kinda just an integral.
>>
>>9153055
Short answer: no.

Long answer: you need some assumption on your function f. Specifically, if F is your integral, you want F over gamma to be in L^2 (or some other Hilbert space).
>>
>>9153040
Do you have an Idea how i can show that it lives in such a complete space ?


I thought like this: the integral is like a summation and f(t) consists of cauchy functions, then its as if you say that the limes in mean or something like that every cauchy function converges to a point in a space L^p, and this space is complete.

because its like a condition for convergence in a complete space, where the this mean converges, its in lives in this space....


sorry, im bad at explaining what i mean
>>
>>9153065
what if f is a cauchy sequence ?
>>
And thanks for the answers so far, its really nice of you.
>>
>>9153066
I'm sorry but you seem really confused about integrals and L^p spaces. If f is an arbitrary function in two variables then integrating over one of them just leaves you with a function in the remaining variable t (what I called F). Your whole question then boils down to whether F/Γ is in L^2 for an arbitrary function F, and the answer is no.

Could you tell me why you're asking this question? What is so special about the gamma function?
>>
>>9153071
Not sure how you would integrate a sequence.
>>
>>9153085
yes i am really confused. why could it not be in L^p with p>=1 ?
>>9153086
e^x is a cauchy sequence, or not ?
>>
>>9153014
GONNA TAKE YOU FOR A RIDE
>>
>>9153095
Pick any function that is not in L^p and call it g. Define F by F=gΓ, then clearly F/Γ is not in L^p (since it's equal to g). Your problem is that F is arbitrary, you need some assumption on it.

e^x is a function, not a sequence.
>>
>>9153105
but e^x =limn-->infty (1+x/n)^n

multiply every term with each other and get a cauchy sequence .. ?
>>
>>9153095
It could, but not without some restrictions on f. If you assume f is L^2 then you could write it in some basis {h_n}, maybe even one that would be nice to integrate but the issue is that when you've integrated and divided by Gamma your inner product might be rough to define.
>>
File: Parallelogram_law[1].png (58KB, 444x592px) Image search: [Google]
Parallelogram_law[1].png
58KB, 444x592px
>>9153095
The space L^p with p not equal to do 2 does not have an inner product which is compatible with its distance function. One way to think of it is that there exists a compatible inner product for a metric exactly if the metric satisfies the parallelogram law:
[eqn]2\lVert u\rVert^2 + 2\lVert v\rVert^2 = \lVert u + v\rVert^2 + \lVert u - v\rVert^2[/eqn]
For p not equal to 2 it doesn't.
That an inner product exists (equivalently, that angles make sense) is a very special thing for infinite dimensional vector spaces.
>>
>>9153125
Ok assume the integral divided by the gamma can be written as a cauchy sequence and converges to a function.

Is this function then L^p ?
>>
>>9153120
The sequence (1+x/n)^n is a sequence in n. The limit of this sequence no longer depends on n, it is a function in x.
>>
>>9153131
No, since the limit function could be anything. If it converges to our previous g then it is not in L^p
>>
>>9153141
L^p spaces are complete with respect to the L^p metric, but he was probably talking about convergence pointwise.
>>
>>9153143
yes thats what i mean.
>>
>>9153143
I assumed he was talking about that yes.
>>
>>9153141
and if the limit function is a cauchy sequence ? I mean im not sure if i interpret this correctly....

A convergent sequence is always necessarily a Cauchy sequence. However the converse is not necessarily true. A metric space with the property that any Cauchy sequence has a limit is called complete, see also Cauchy criteria.


property that any Cauchy sequence has a limit

can you maybe give me an example of such a limit function that youre talking about which is in a complete space?
>>
>>9153156
The point I have been trying to get across is that you are starting with arbitrary functions. If you start with a sequence of functions in L^p and if this sequence is Cauchy with respect to the L^p norm (note that the sequence is Cauchy, not the functions themselves), then the limit is in L^p. This is not what you have been asking so far.

>can you maybe give me an example of such a limit function that youre talking about
No problem. You've already figured out yourself that e^x is a limit of a Cauchy sequence, and e^x is not in L^p(R).
>>
>>9153167
Ok thanks. Ill have to try to understand it better but you helped me.
Thread posts: 27
Thread images: 2


[Boards: 3 / a / aco / adv / an / asp / b / bant / biz / c / can / cgl / ck / cm / co / cock / d / diy / e / fa / fap / fit / fitlit / g / gd / gif / h / hc / his / hm / hr / i / ic / int / jp / k / lgbt / lit / m / mlp / mlpol / mo / mtv / mu / n / news / o / out / outsoc / p / po / pol / qa / qst / r / r9k / s / s4s / sci / soc / sp / spa / t / tg / toy / trash / trv / tv / u / v / vg / vint / vip / vp / vr / w / wg / wsg / wsr / x / y] [Search | Top | Home]

I'm aware that Imgur.com will stop allowing adult images since 15th of May. I'm taking actions to backup as much data as possible.
Read more on this topic here - https://archived.moe/talk/thread/1694/


If you need a post removed click on it's [Report] button and follow the instruction.
DMCA Content Takedown via dmca.com
All images are hosted on imgur.com.
If you like this website please support us by donating with Bitcoins at 16mKtbZiwW52BLkibtCr8jUg2KVUMTxVQ5
All trademarks and copyrights on this page are owned by their respective parties.
Images uploaded are the responsibility of the Poster. Comments are owned by the Poster.
This is a 4chan archive - all of the content originated from that site.
This means that RandomArchive shows their content, archived.
If you need information for a Poster - contact them.