[Boards: 3 / a / aco / adv / an / asp / b / bant / biz / c / can / cgl / ck / cm / co / cock / d / diy / e / fa / fap / fit / fitlit / g / gd / gif / h / hc / his / hm / hr / i / ic / int / jp / k / lgbt / lit / m / mlp / mlpol / mo / mtv / mu / n / news / o / out / outsoc / p / po / pol / qa / qst / r / r9k / s / s4s / sci / soc / sp / spa / t / tg / toy / trash / trv / tv / u / v / vg / vint / vip / vp / vr / w / wg / wsg / wsr / x / y ] [Search | Free Show | Home]

Can any of you brailets represent (a) in a more simplified equation?

This is a blue board which means that it's for everybody (Safe For Work content only). If you see any adult content, please report it.

Thread replies: 43
Thread images: 7

File: angle.png (134KB, 486x449px) Image search: [Google]
angle.png
134KB, 486x449px
Can any of you brailets represent (a) in a more simplified equation?

Rope and pulleys don't have masses and the friction is (u)
>>
I guess not
>>
>>8551980
sorry we're not doing your homework for you bro maybe ask santa for christmas
>>
>>8551983
>implying you can
>>
>>8551983
This

Also "simplified equation" you mean literally "I plugged formulae for friction and tension with resect to angles into a net force and that was about it".
>>
>>8551990
well I;m trying to find anything common in the forces but I can't
>>
>>8551995
Try being less of a brainlet.
>>
>>8551999
Believe I'm trying
>>
File: retard.jpg (28KB, 720x430px) Image search: [Google]
retard.jpg
28KB, 720x430px
>>8551978
This is why nothing ever works right. We are training a bunch of engineers to always assume that
> Rope and pulleys don't have masses

Then when they graduate, they find out that, yes, yes they do.
>>
>>8551989

>implying that's not shit bait to make him do it
>>
>>8552030
I'm in med school
>>8552032
well i just need a little push in the right direction, math isn't really my thing
>>
>uses Newtonian mechanics for an atwood machine
>calls us brainlets

Hahahahaha
>>
>>8552036
Use virtual work
>>
>>8552063
WTF is that?
>>
File: pulley_newtonian.png (14KB, 468x455px) Image search: [Google]
pulley_newtonian.png
14KB, 468x455px
If anyone wants to try and solve this differential equation, then go ahead.

But Euler-Lagrange equation should be much easier.
>>
File: pulley-Lagrange.png (21KB, 758x732px) Image search: [Google]
pulley-Lagrange.png
21KB, 758x732px
>>8552153
Now for Euler-Lagrange
>>
>>8552153
>>8552201

You done fucked up, mate. So, you have two different equations for the same motion? What's this, Schrodinger's pulley?
>>
>>8552222
Fuck it's gonna be hard to ague against quads but I'll try.
The first one is a differential equation and isn't finished. But if you were to solve the differential equation for x** (or a) , you should get the equation in the second image
>>
>>8552036

If math isn't really your things, that equation doesn't need to be simplified. Its plug and chug for a correct answer on something theoretical.

You did fine.
>>
>>8552232
But you won't get the same equation. There are no terms with square roots in first equation. Also your second equation has dimensionless term [math]\frac{m_2}{m_1+m_2}[/math].
>>
>>8552201
quick question, why can you leave out the acceleration of the ssecond mass in the dissipation term of the potential?
>>
>>8552249
Thanks
>>
>>8551978
what does T stand for?
>>
>>8552264
both masses have the same acceleration.

>>8552260
Have you ever solved a differential equation m8?
>>
>>8552296
Dude, don't try to be smug with me. [math]\ddot{x}=a[/math]. Your second equation is differntial equation too. You have two different differential equations that decribe the same motion. So, the block has two different accelerations at the same time? How does that work?
>>
>>8552280
tension
>>
>mechanics

kek, i remember when i was 12
>>
>>8552296
>both masses have the same acceleration.
Do they? isn't there a cos(alpha) needed somewhere?
But the normal force of m1 remains the same, so the dissipation is obviously mu.m1.g.x
While the upward force on m1 by m2 depends on the acceleration of m2 so why isn't that term mu.m2.x.(g-a).sin(alpha)?

sorry for no latex and possibly a stupid question
>>
>>8552346
If you consider the tension of the string constant they will have the same acceleration. Its basically a rigid body with that hypothesis.
>>
File: 1481825704566.jpg (32KB, 470x698px) Image search: [Google]
1481825704566.jpg
32KB, 470x698px
>>8552406
>you
Nope, just look at the geometry, when on body travels a unit distance, the other ones travels different distance. Trigonometry, nigga.
>>
>>8552412
That doesn't mean the acceleration is different?
>>
>>8552412
The acceleration in the generalized coordinate system is the same you brainlet. Come back when you have studied Lagrangian mechanics
>>
>>8552421
that means exactly that, you are describing only one bodies acceleration. When the rope is horizontal, the acceleration is same. Imagine the very steep rope angle, the m1 body would have to cover a much larger distance, thus higher acceleration.
>>
>>8552437
No
>>
>>8552422
Listen you faggot, using priciple of virtual work, at first, when you are describing the system, you evaluate different distances and shit, eventually you can get a "generalised" acceleration, but different bodies will accelerate different.
Now, the op fag, I think his problem is not supposed to go so deep, so the full problem description would be helpful.
>>
File: shitstain.png (5KB, 360x348px) Image search: [Google]
shitstain.png
5KB, 360x348px
>>8552422
>>8552443
No, seeing that you are a fucking retard, I won't wait for another answer from you.
I present you with a more visual example.
Generalise my dick, you cun't
>>
>>8552444
Define x1 to be in the direction of alpha and x2 to be downwards.
Find the Lagrangian and solve the Euler Lagrangian equations
Use the constraint x1+x2=l where l is the length of the string and add the constraint force.
I haven't checked the guys working it could be wrong but they do have the same acceleration ( in the new coordinates) considering they are literally attached by in in-extensible string
>>
>>8552462
Yes this is a double pulley where 2x1+x2=l
so 2x1''=-x1''... I fail to see the point
>>
>>8552487
Yes, let's say we solved the system and the body m1 moves at 1 m/s2 upwards. The body m2 is going down at 2 m/s2.
Are you all such fucking retards?
The best part is that parts of the string are not even moving...
You do realise, that geometry plays a part, of how bodies move?
>>
>>8552498
The point is that the component in the direction of the string must be the same, I think the confusion lies in the way we are defining our coordinate system
>>
>>8552508
The confusion lies in the way that op faggot described the problem. There is no description except the drawing.
I guess, that as op states, it is not his main course, the problem should be very simple in nature, now the most interesting thing for me is what does the problem ask?
>>
>>8552030
This is a lower division physics problem, you get a better understanding of how to account for that sort of thing in classes where it matters
>>
>>8552030
>This is why nothing ever works right. We are training a bunch of engineers to always assume that
Nope, they are trained to see the essence or problem. Maybe we should include air resistance here? How about time dilation?
Yeah, rope and pulleys... The situations there this would matter are basically nonexistant.
Thread posts: 43
Thread images: 7


[Boards: 3 / a / aco / adv / an / asp / b / bant / biz / c / can / cgl / ck / cm / co / cock / d / diy / e / fa / fap / fit / fitlit / g / gd / gif / h / hc / his / hm / hr / i / ic / int / jp / k / lgbt / lit / m / mlp / mlpol / mo / mtv / mu / n / news / o / out / outsoc / p / po / pol / qa / qst / r / r9k / s / s4s / sci / soc / sp / spa / t / tg / toy / trash / trv / tv / u / v / vg / vint / vip / vp / vr / w / wg / wsg / wsr / x / y] [Search | Top | Home]

I'm aware that Imgur.com will stop allowing adult images since 15th of May. I'm taking actions to backup as much data as possible.
Read more on this topic here - https://archived.moe/talk/thread/1694/


If you need a post removed click on it's [Report] button and follow the instruction.
DMCA Content Takedown via dmca.com
All images are hosted on imgur.com.
If you like this website please support us by donating with Bitcoins at 16mKtbZiwW52BLkibtCr8jUg2KVUMTxVQ5
All trademarks and copyrights on this page are owned by their respective parties.
Images uploaded are the responsibility of the Poster. Comments are owned by the Poster.
This is a 4chan archive - all of the content originated from that site.
This means that RandomArchive shows their content, archived.
If you need information for a Poster - contact them.