[Boards: 3 / a / aco / adv / an / asp / b / biz / c / cgl / ck / cm / co / d / diy / e / fa / fit / g / gd / gif / h / hc / his / hm / hr / i / ic / int / jp / k / lgbt / lit / m / mlp / mu / n / news / o / out / p / po / pol / qa / qst / r / r9k / s / s4s / sci / soc / sp / t / tg / toy / trash / trv / tv / u / v / vg / vp / vr / w / wg / wsg / wsr / x / y ] [Search | Home]
So, consider the sum defined by :
Images are sometimes not shown due to bandwidth/network limitations. Refreshing the page usually helps.

You are currently reading a thread in /sci/ - Science & Math

So, consider the sum defined by :
$T_0 (n)=1$
$T_m (n)=\sum_{k=1}^n T_{m-1} (k)$
How can I apply this to actual useful stuff ?
How can I use this ?
'cause I got a simple formula for this
>>
>>7848052
when you do something but you don't know why the fuck you did it means you got too much free time and you're wasting it
>>
>>7848052
it looks a bit like ackerman shit. But it's not. let's see what it makes for small m:

T1(n)=n
T2(n)=n(n+1)/2
T3(n)=sum of above shit...

well i wonder what your formula is.

and no, it's not n^m.
>>
>>7848104
with a bit of intuition you realise that your sum of sums comes from columns from the pascal's triangle, so you get something like this with a bizarre proof :
$T_m (n)=\dbinom{m+n}{n}$
And I was asking myself, maybe I can represent this in general with some geometrical figure with cubes and shit, you know ?
>>7848086
I like to prove stuff, I've got a bit of free time, being in Terminale in France, I guess that's the equivalent of 13th grade, but don't worry, I'm not underaged
>>
>>7848052
Actually bro, past a certain level in math, the probability you'll find something that'll be usefull in your life is more and more closer to 0 than 1
>>
>>7848133

oh c'est mignon, je suis >>7848104.
moi aussi j'étais en terminale... genre ya 13 ans!!

après j'ai fait des grosses maths bien compliquées et c'était cool.

Pour ton truc je regarde et je te dis.
>>
>>7848151
Merci bien, 13 ans ça doit construire pas mal d'expérience, effectivement j'ai pas mal de temps pour démontrer des trucs basiques comme des résultats connus de combinatoire ou des séries en général, mais j'ai pas assez de "culture" pour me faire un avis sur n'importe quoi encore
>>
>>7848146
Yeah, that's for sure, but given the way I did the proof for this series of sum, I'm sure there gotta be some applications that aren't too sophisticated
>>
>>7848160

Stay on /int/ you faguettes
>>
>>7849211
We're not totally talking about languages and stuff, right ?
>>
>>7849211